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The search for unifying properties of complex networks is popular,
challenging, and important. For modeling approaches that focus on
robustness and fragility as unifying concepts, the Internet is an
especially attractive case study, mainly because its applications are
ubiquitous and pervasive, and widely available expositions exist at
every level of detail. Nevertheless, alternative approaches to
modeling the Internet often make extremely different assumptions
and derive opposite conclusions about fundamental properties of
one and the same system. Fortunately, a detailed understanding of
Internet technology combined with a unique ability to measure the
network means that these differences can be understood thor-
oughly and resolved unambiguously. This article aims to make
recent results of this process accessible beyond Internet specialists
to the broader scientific community and to clarify several sources
of basic methodological differences that are relevant beyond
either the Internet or the two specific approaches focused on
here (i.e., scale-free networks and highly optimized tolerance
networks).

complex network � HOT � Internet topology � network design �
scale-free network

A popular case study for complex networks has been the
Internet, with a central issue being the extent to which its

design and evolution have made it ‘‘robust yet fragile’’ (RYF), that
is, unaffected by random component failures but vulnerable to
targeted attacks on its key components. One line of research
portrays the Internet as ‘‘scale-free’’ (SF) with a ‘‘hub-like’’ core
structure that makes the network simultaneously robust to random
losses of nodes yet fragile to targeted attacks on the highly con-
nected nodes or ‘‘hubs’’ (1–3). The resulting error tolerance with
attack vulnerability has been proposed as a previously overlooked
‘‘Achilles’ heel’’ of the Internet. The appeal of such a surprising
discovery is understandable, because SF methods are quite general
and do not depend on any details of Internet technology, econom-
ics, or engineering (4, 5).

One purpose of this article is to explore how this SF depiction
compares with the real Internet and explain the nature and origin
of some important discrepancies. Another purpose is to suggest that
a more coherent perspective on the Internet as a complex network,
and in particular its RYF nature, is possible in a way that is fully
consistent with Internet technology, economics, and engineering. A
complete exposition relies on the mathematics of random graphs
and statistical physics (6), which underlie the SF theory, as well as
on the very details of the Internet ignored in the SF formulation (7).
Nevertheless, we aim to show here that the essential issues can be
readily understood, if not rigorously proven, by using less technical
detail, and the lessons learned are relevant well beyond either the
Internet or SF-network models (8–10).

Power Laws and SF Models
One widespread focus of attention has been on ‘‘power laws’’ (or
‘‘scaling’’) in graph vertex connectivity. For a graph having n
vertices, let di denote the degree of vertex i, 1 � i � n. We call
D � {d1, d2, . . . , dn} the degree sequence of the graph, assumed
without loss of generality always to be ordered d1 � d2 � � � � �
dn. Let G(D) denote the set of all connected simple graphs (i.e.,

no self-loops or parallel edges) having the same graph degree D.
We will say that graphs g � G(D) have scaling-degree sequence
D (or D is scaling) if for all 1 � k � ns � n, D satisfies a power-law
rank-size relationship of the form kdk

� � c, where 0 � c and 0 �
� are constants and ns determines the range of scaling (11).
Because scaling implies log(k) � �log(dk) � log(c), doubly
logarithmic plots of degree dk versus rank k yield approximately
straight lines of slope ��. In contrast, exponential rank-size
relationships (i.e., ke�dk � c) result in approximately straight
lines on semilogarithmic plots.

The most significant SF claims for the Internet are that the router
graph has power-law degree sequences that give rise to hubs, which
by SF definition are highly connected vertices that are crucial to the
global connectivity of the network and through which most traffic
must pass (3). The SF assertion (later formalized in ref. 12) is that
such hubs hold the network together, giving it ‘‘error tolerance’’ to
random vertex failures, because most vertices have low connectivity
(i.e., are nonhubs) but also have ‘‘attack vulnerability’’ to targeted
hub removal, a previously overlooked Achilles’ heel. The rationale
for this claim can be illustrated by using the toy networks shown in
Fig. 1, all of which have the identical scaling-degree sequence D
shown in Fig. 1e. Fig. 1a shows a graph (size issues notwithstanding)
that is representative of the type of structure typically found in
graphs generated by SF models, in this case preferential attachment
(PA). This graph is drawn in two ways: the left and right visual-
izations emphasize the growth process and Internet properties,
respectively. Clearly, the highest-degree nodes are essential for
graph connectivity, and this feature can be seen even more clearly
for the more idealized SF graph shown in Fig. 1b. Thus, the SF
claims would certainly hold if the Internet looked at all like Figs. 1
a and b. As we will see, the Internet looks nothing like these graphs
and is much closer to Fig. 1d, which has the same degree sequence
D but is otherwise completely different, with high-degree vertices
at the periphery of the network, where their removal would have
only local effects. Thus, although scaling-degree sequences imply
the presence of high-degree vertices, they do not imply that such
nodes form necessarily ‘‘crucial hubs’’ in the SF sense.

The deeper origins of the claims involving power laws and hubs
arise from the SF models’ roots in statistical physics, in which any
particular graph is interpreted as an element from a larger statistical
ensemble of graphs, with probability weights that typically arise
either implicitly through some underlying stochastic generation
process or by a mechanism that explicitly assigns a weight to each
element of the ensemble (13, 14). Although there exist a variety of
methods for generating ensembles of graphs having scaling-degree
sequences, including PA, generalized random graph, power law
random graph (15), and random degree-preserving rewiring (16),
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the resulting models are widely conjectured to be asymptotically
equivalent (e.g., see ref. 6 and references therein).

In particular, for a graph g having degree sequence D, we
define the purely graph-theoretic quantity s(g) � �(i, j)�E(g)didj,
where E(g) is the set of edges in the graph. It is easy to check that
high s(g) requires high-degree vertices to connect to other
high-degree vertices. Normalizing against smax � max{s(g): g �
G(D)}, we define the measure 0 � S(g) � 1 of the graph g as
S(g) � s(g)�smax. Although s(g) and S(g) can be computed for any
graph and do not depend on any particular construction mech-
anism, they have a special meaning in the context of ensembles
of graphs. Specifically, S(g) has a direct interpretation as the
relative log-likelihood of a graph resulting from the generalized
random-graph construction (17); thus, all of the SF-model–
generation mechanisms generate essentially only high S graphs.
The S-metric also potentially unifies other aspects of SF graphs,
because it is closely related to betweenness, degree correlation
(6), and graph assortativity (18) and captures several notions of
self-similarity related to graph trimming, coarse graining, and
random rewiring (6).

The focus on ensemble-based methods means that the analysis in
SF models has implicitly ignored those graphs that are unlikely to
result from such constructions, in particular graphs with small S.
Thus, although power-law degree distributions are unlikely under
some traditional random graph constructions [e.g., Erdös–Renyı́
random graphs (19)], there are a multitude of other model-
generation mechanisms that give rise to power laws (20). The
SF-generating mechanisms are only one kind, but they tend to
generate only high S graphs, which leaves unexplored an enormous
diversity of low S graphs, as seen in Fig. 1. The graphs in Fig. 1 a
and b are relatively likely to result from probabilistic construction,
whereas the graphs in Fig. 1 c and d are vanishingly unlikely. The
PA-type graph shown in Fig. 1a has S(ga) � 0.61 and is typical of
the graphs that are likely under a variety of random-generation
methods. The graph shown in Fig. 1b is the smax graph and thus by
definition has S(gb) � 1.0. It can be thought of both as the most
likely graph and also (uniquely) as the most ‘‘perfectly’’ SF graph
with this degree sequence. Of course, the sheer enormity of the
number of different high S graphs means that any particular one

graph, even the relatively most likely, is actually unlikely in absolute
terms to be selected. The graphs in Fig. 1 c and d have the values
S(gc) � 0.33 and S(gd) � 0.34, respectively; furthermore, there are
relatively few graphs with S values this low, and thus any graphs
similar to these are vanishingly unlikely to arise at random (6). The
remainder of this article explains in more detail why the underlying
forces at work in the evolution of the real router-level Internet avoid
the generation of high S graphs and how this feature can be
captured in an optimization-based design framework. We also
consider what, if anything, this framework has to say about the RYF
nature of the Internet.

A Look at the Actual Internet
An obvious starting point for investigating the structure and
underlying forces at work in the Internet is to inspect detailed
router-level maps from Internet service providers (ISPs).
Abilene, the backbone for the Internet2 academic network, is
illustrated in Fig. 1 and is an ideal example for many reasons that
will be exploited throughout this analysis.** Abilene publishes
detailed hardware specifications for each router and link, so Fig.
1 is exact, not an approximation based on indirect measure-
ments. Abilene is also a state-of-the-art network with essentially
no difference between physical (i.e., layer two) and Internet-
protocol (IP) (i.e., layer three) connectivity. This simplifies the
exposition without loss of generality and also eliminates a source
of confusion in measured data from networks that use older
legacy technologies. Using regional academic networks and
commercial ISPs, we verified that all the inferences and conclu-
sions based on Abilene hold in general. Commercial ISPs do not
allow publishing such details because of proprietary consider-
ations, but router-level measurement studies (21, 22, ††) further
confirm our analysis (7, 23, 24), although this requires additional
statistical and Internet-specific expertise beyond the intended scope
of this article.

**Detailed information about the objectives, organization, and development of the
Abilene network are available from www.internet2.edu�abilene.

††SKITTER Project. Cooperative Association for Internet Data Analysis, University of Cali-
fornia San Diego Supercomputing Center (www.caida.org).

Fig. 1. Diversity among graphs having the same degree sequence D. (a) RNDnet: a network consistent with construction by PA. The two networks represent
the same graph, but the figure on the right is redrawn to emphasize the role that high-degree hubs play in overall network connectivity. (b) SFnet: a graph having
the most preferential connectivity, again drawn both as an incremental growth type of network and in a form that emphasizes the importance of high-degree
nodes. (c) BADNet: a poorly designed network with overall connectivity constructed from a chain of vertices. (d) HOTnet: a graph constructed to be a simplified
version of the Abilene network shown in Fig. 2. (e) Power-law degree sequence D for networks shown in a–d. Only di � 1 is shown.

14498 � www.pnas.org�cgi�doi�10.1073�pnas.0501426102 Doyle et al.
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Fig. 2 shows that Abilene is designed as a sparsely connected
mesh of uniformly high-speed [10 gigabits per sec (Gbps)], long-
range links between routers located in 11 major U.S. cities, with
connectivity to regional and local networks provided by some
minimal amount of redundancy. These design features are typical
of ISP backbones (the main connections and routers composing an
ISP’s national or international network), which can differ in overall
size but are qualitatively similar. One of their most obvious features
is the complete absence of SF hubs; high-degree vertices can exist
but are found only within the local networks at the far periphery of
the network and would not appear anywhere close to the backbone.

Although the issue of whether the real Internet actually has
power laws in its connectivity is beyond the scope of this article,
there exists considerable evidence that existing claims of power laws
in the router-level Internet may be the result of misinterpretation
of available measurements and�or their naive and inappropriate
statistical analysis (see ref. 6 for a detailed discussion). It is certainly
the case that current router technology, in principle, could support
high variability (possibly scaling), but a closer look at existing router
technology confirms that if high connectivity exists at all, it will be
found toward the network periphery and not in its core. As we will
show next, this is a consequence of the need for a high-performance
network.

Internet Modeling: An Optimization-Based Approach
Much of the topology of Abilene and other ISP backbones can be
understood by using annotated graphs with a few technological and
economic constraints that provide a simple, yet surprisingly com-
plete model of the essentials of network design (7). Highly opti-
mized�organized tolerance�tradeoffs (HOT) has been proposed as
a conceptual framework for capturing the highly organized, opti-
mized, and RYF structure of complex highly evolved systems (8).

HOT seeks an abstract but unified approach to diverse complex
systems through models involving optimization of tradeoffs be-
tween multiple functional objectives of networks subject to con-
straints on their components, usually with an explicit source of
uncertainty against which solutions must be tolerant, or robust.
Constrained optimization and robustness are the universal themes,
but models of function, uncertainty, component constraints, and
environment are necessarily domain-specific. One consistent result
of the HOT framework has been that once functional performance
and robustness tradeoffs are considered, then in a variety of toy
models engineering design (7) or biological evolution (9) easily
generates power laws. This can occur in both deterministic and
stochastic HOT models, including models motivated by physics (8).
Power laws have been a central focus of the ‘‘emergent complexity’’
view of SF and related methods, which arrive at them in completely
different ways than HOT with its focus on ‘‘organized complexity.’’

Here, we present toy networks reflecting the HOT approach to
modeling the router-level Internet, which we will contrast with
the corresponding SF-network models. To this end, consider again
the example network shown in Fig. 1d, which we argue captures the
kind of essential domain-specific tradeoffs that occur in engineer-
ing. Accordingly, we refer to this toy network as HOTnet, although
it is important to underscore that our results do not depend on
designs being formally optimal, which is unlikely to occur in
practice. Instead, we will argue that any sensible network-design
process with minimally realistic assumptions would produce some-
thing qualitatively similar.

A HOT model of the Internet’s router-level topology requires
two general elements: constraints and functional objectives. First,
the technological and economic constraints on components such as
routers and links and their interconnection restrict what topologies
are feasible or possible. Second, network backbones, and router-
level connectivity more generally, are subsystems in the larger,
decentralized and layered Internet infrastructure. The consequence
is that such subsystems can only be understood fully in terms of the
functions that they provide to the higher layers of the protocol stack
and the rest of the network. The main purpose for building physical
network infrastructures at the lower layers of the protocol stack is
to carry effectively the expected or projected overall traffic demand
generated at the higher layers, which in turn is ultimately driven by
users at the application layer. Such teleological explanations are
understandably avoided in physics but are essential for engineering
networks, and this gap is responsible for much of the difference
between the two approaches described in this article.

A standard metric for network performance adopted here is the
maximum throughput of the network under a ‘‘gravity model’’ of
end-user traffic demands (25). It assumes that every end vertex i has
a total bandwidth demand xi, that two-way traffic is exchanged
between all pairs (i, j) of end vertices i and j, and the flow Xij of
traffic between i and j is given by Xij � �xixj, where � is some global
constant, and is otherwise uncorrelated from all other flows.
Although more elaborate metrics are possible, this notion of
network performance is a reasonable measure of the ability to
provide a fair allocation of end-user bandwidths. Our performance
measure for a given network g is then its maximum throughput with
gravity flows, computed as P(g) � max� �ij Xij, subject to RX � B,
where R is the routing matrix obtained by using standard shortest-
path routing. R � [Rkl], with Rkl � 1 if flow l passes through router
k, and Rkl � 0 otherwise. X is the vector of all flows Xij, indexed to
match the routing matrix R, and B is a vector consisting of all router
bandwidth capacities.

The crucial elements of a design aimed at this notion of perfor-
mance are realistic router capacities and economic considerations.
Hardware technology fundamentally limits the number of data
packets that can be processed per unit of time; thus, routers must
obey a form of flow conservation in the traffic that they handle.
Although total router capacity is constantly increasing as hardware
improves, this tradeoff in router utilization cannot be avoided. Fig.

Fig. 2. Router-level topology of Abilene. Each vertex represents a router,
and each link represents a physical connection; however, each physical con-
nection can support many virtual connections, giving the appearance of
greater connectivity at higher layers of the IP stack. End-user networks are
shown in white, peering networks are shown in blue, and high-degree routers
can only be found at the network periphery (not shown).

Doyle et al. PNAS � October 11, 2005 � vol. 102 � no. 41 � 14499

EN
G

IN
EE

RI
N

G

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
24

, 2
02

1 



www.manaraa.com

3a shows the router bandwidth-degree limits used in this model. In
terms of economics, the cost of installing and operating physical
links increases with link distance and can dominate the total budget
for the global infrastructure, particularly in the backbone. Although
routers impose overall bandwidth limits, the backbone cost is
primarily dominated by the installation and operation of links. This
cost imposes strong incentives to minimize the number and length
of deployed links by aggregating and multiplexing traffic at all levels
of the network hierarchy, from the periphery to the core. Thus, the
combination of router technology and link costs necessitate that
when moving from the periphery to the network core, the link
capacities, link lengths, and total router throughput generally
increase while router degrees decrease. The result is possibly highly
variable bandwidth and router degrees at the network’s periphery,
with necessarily a much greater uniformity of high-bandwidth and
low-degree routers in the core.

As noted above, the network HOTnet shown in Fig. 1d was
inspired by the real Abilene network, and its overall connectivity
was designed to achieve high performance while maintaining the
scaling-degree sequence shown in Fig. 1e. This network uses
essentially the Abilene backbone as its core (the inner circle of
routers in Fig. 1d) and then assumes that end users (the outer
circle) connect through small and greatly compressed single-
level regional networks (the middle circle of vertices). This
allows us to create a network that uses the same technology as
the real Internet but has a scaling-degree sequence. In particular,
this scaling vertex degree is achieved in a minimal but techno-
logically plausible way by choosing a gravity model of end-user
traffic demands and then aggregating these end users with
routers that have high variability in their connectivity but must
satisfy a particular router-technology constraint. Although the
resulting network shown in Fig. 1d is far too compressed to look
like the real Internet, it has the same performance objectives,
constraints, and design principles, although simplified, and
shows that a scaling-degree sequence is at least plausibly con-
sistent with Internet technology and economics. It also could
reasonably be argued that this design-driven toy model grossly
oversimplifies real Internet technology and economics, but we
next demonstrate that this type of model has superior explana-
tory power to alternatives that ignore them entirely.

Contrasting HOT and SF Models
In view of the empirical evidence and the engineering arguments
against popular SF claims regarding the location and criticality of
the highest-connectivity routers, we next quantify more precisely
the qualitative observations that we made above to illuminate the
key methodological differences behind these different approaches
and their resulting models. In doing so, we consider again the four
toy models shown in Fig. 1 along with their most relevant properties.

To contrast the features of graphs having the same scaling-degree
sequence, we first consider the network HOTnet shown in Fig. 1d
alongside the ‘‘most preferential’’ network in Fig. 1b, which we
denote in the remainder of this article as SFnet. In computing the
performance of these two graphs, we observe that P(HOTnet) �
5.76 � 1011 bps, whereas P(SFnet) � 4.89 � 109 bps, a difference
of �2 orders of magnitude.

This enormous performance difference can be understood by
examining the utilization of individual routers within each network,
as illustrated in Fig. 3a. This figure shows the overall feasible
configuration region encapsulating the conservation between
router degree and router throughput (measured in bandwidth) as
discussed above and represented as B in the computation of
performance. Although greatly simplified for use here, this abstract
representation for router bandwidth is consistent with real router
technology (7), and it is adequate for our purposes because the
resulting conclusions depend only on the most general features of
Fig. 3a and not on specific details. The unambiguous source of the
poor SFnet performance is that the high-degree hubs become
saturated and create severe bottlenecks, leaving the rest of the
network with low overall utilization. In contrast, the connectivity in
HOTnet is such that the core routers are highly used and therefore
enable greater overall network throughput.

An additional view into the performance and utilization of these
two networks is available by considering the distribution of band-
width that is actually delivered to the end users in these two
networks under maximum-flow conditions, as shown in Fig. 3b. The
distribution of achieved end-user bandwidth for HOTnet is highly
variable, spanning 4 orders of magnitude (as opposed to five or
more found in real networks; see ref. 23), but is considerably higher
than what is received by users in SFnet, who get uniformly low
bandwidth. Another issue not quantified here is that no matter
where the high-degree SF hubs were located physically, the link
costs to connect them would be prohibitively high. In contrast, the
design aspects incorporated into HOTnet ensure that the deployed
routers are used efficiently and the network is able to satisfy
end-user bandwidth demands that are highly variable with relatively
few long-range links. For network engineers, the combination of
superior throughput, high router utilization, low link costs, and
realistic end-user bandwidth makes HOTnet highly desirable but
SFnet a very poor design choice, although networking reality
dictates the need for some degree of overprovisioning that will
result in a slightly less efficient network than HOTnet.

Another important comparison between the graphs of HOTnet
and SFnet is to investigate the presence of Achilles’ heel hubs. Here,
we will consider robustness to router failures, defining this robust-
ness as the remaining performance of the network after routers are
removed and after rerouting of traffic. That is, addressing the issue
of network robustness for the Internet requires, at a minimum,

Fig. 3. HOTnet vs. SFnet. (a) Achieved router utilization: HOTnet (circles) is close to the ‘‘efficient frontier,’’ and SFnet (diamonds) operates significantly below
this frontier, with the highly connected hub core router (the diamond in the right upper corner of the feasible region) representing a glaring bottleneck. (b)
Achieved distribution of end-user bandwidths: HOTnet (circles) delivers a wide range of realistically different bandwidths to end users, whereas SFnet (diamonds)
delivers uniformly low bandwidth to all users. (c) Apropos, the Achilles’ heel of the Internet: robustness of HOTnet (SFnet) is measured as residual perfor-
mance after successive deletion of worst-case nodes (deleting the worst 20 vertices corresponds to removing �20% of the routers).

14500 � www.pnas.org�cgi�doi�10.1073�pnas.0501426102 Doyle et al.
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incorporating a simple abstraction of IP routing that accounts for
the feedback mechanism by which the real network ‘‘sees’’ damage
and works around it. Note that the main mechanism by which users
improve robustness to network losses is through link redundancy
(e.g., multihoming), but this was not an objective of our heuristic
HOT design. However, we still can illustrate the differences be-
tween HOTnet and SFnet in some limited way. Fig. 3c shows the
impact of deleting routers in succession, always taking the worst
case that has not yet been deleted. The measure of performance
after deletion of a vertex is the amount of original traffic that still
can be served by the remaining network after rerouting but
with routers that still have to adhere to their original bandwidth
constraints.

Consistent with SF claims (3), the SFnet network is indeed fragile
to the deletion of worst-case vertices (here, worse case means
highest degree) but resilient to deletions of other vertices. In stark
contrast, HOTnet is not only robust to worst-case deletions (here,
worst cases are low connectivity core vertices) but also shows high
tolerance to deleting other vertices. In particular, loss of high-
degree edge routers disconnects only low-bandwidth users and has
no other effect on overall connectivity. Because SFnet has such
poor nominal performance to start with, its performance is worse
intact than HOTnet after the latter has sustained substantial
damage. Thus, the Achilles’ heel claim for SF networks does not
seem to hold simply on the basis of having a scaling-degree
sequence D, and we will provide one possible explanation for this
difference in the next section. Fortunately, the actual Internet is
more like HOTnet than SFnet and also has a great deal of
additional robustness. Because the real Internet consists of multiple
redundant HOTnet-type backbones that are moderately loaded,
the ability to reroute traffic ensures that end users typically expe-
rience no discernible degradation in performance when core rout-
ers fail. In particular, the real Internet would never experience the
type of separation of the network into disjoint components as
claimed by the Achilles’ heel hub argument unless massive losses
occurred.

The HOTnet model shown in Fig. 1d and the SFnet model shown
in Fig. 1b are just two points in the space G(D) of simple connected
graphs having identical scaling-degree D (shown in Fig. 1e). The
space G(D) is difficult to visualize, mainly because it is very diverse
and has a combinatorially large number of elements. However,
some aspects can be explored by projecting this high-dimensional
space onto lower dimensions by using macroscopic measures. Here
we leverage our previously defined notions of performance P(g)
and relative likelihood S(g), and we show the values for our toy
networks in Fig. 4. The ability of the P(g) and S(g) measures to help
differentiate among graphs in the space G(D) is illuminated further
by considering the two other networks shown in Fig. 1.

Fig. 1c depicts a graph having a heuristically ‘‘poor’’ engineering
design (denoted BADnet), and Fig. 1a depicts a graph having
‘‘random’’ connectivity (denoted RNDnet) and is typical of graphs
grown by PA. Although all four toy networks shown in Fig. 1 are
identical as far as their degree sequence D is concerned, three of
them occupy completely opposite corners of the P(g) versus S(g)
plane. The BADnet network demonstrates that low S(g) does not
necessarily imply high performance, and in general, graphs having
low S(g) may be completely different from one another. In contrast,
the RNDnet shows that other graphs resulting from SF models have
the same poor qualitative and quantitative features as SFnet, and
for the same reasons. We also observe that graphs having S(g) �
1 are much more alike (essentially unique), and our results to date
suggest that if D exhibits high variability, it is impossible to have
graphs g � G(D) with both high S(g) and high P(g).

Finally, we consider the graph operation of pairwise degree-
preserving rewiring, whereby two randomly chosen edges are
rewired but constrained to preserve the graph degree and network
connectivity. It is easily shown that by a finite succession of such
rewirings, any graph g � G(D) can be converted to any other, and

thus this process provides a simple mechanism for exploring the
space G(D). The additional points in Fig. 4 correspond to rewirings
of HOTnet and SFnet, respectively, and demonstrate that although
rewiring the former quickly produces networks with poor perfor-
mance, rewiring the latter produces little improvement in perfor-
mance. Note that the PA graph shown in Fig. 1a is representative
of a large number of graphs resulting from arbitrary pairwise
rewiring, thus justifying its name as RNDnet and supporting the
conjecture that all SF models generate essentially the same ensem-
ble of graphs.

Although far from comprehensive, the structural metric S(g)
provides some understanding of the diversity of graphs in the space
G(D). One striking feature of this view is that some of the most
celebrated features of SF models, particularly the Achilles’ heel
vulnerability, seem to hold only for graphs having scaling-degree
sequence D and high S(g). It is not a necessary consequence of
scaling alone, because it does not apply to networks such as HOTnet
that have low S(g), even if they have the same scaling-degree D.
However, recalling that in addition to measuring the hub-like nature
of a graph, S(g) also has an interpretation as relative graph
log-likelihood, the concentration of points in Fig. 4 suggests that the
vast majority of graphs resulting from SF models have a relatively
high likelihood of occurring and that the likelihood of recovering a
graph similar to HOTnet through probabilistic construction is
vanishingly small.

The Real RYF Internet
The preceding discussion suggests that probabilistic constructions
are unlikely to capture the true router-level structure of the Internet
and also that claims of a vulnerability in high-degree nodes are not
supported by either engineering data or theory. The true RYF
nature of the Internet is a complex and heavily studied issue, but we
will sketch some central features. The perception of the Internet as
a simple, robust, and homogeneous resource is the result of a
layered architecture that uses multiple forms of feedback control
that enable robust performance in the presence of frequent dis-
ruptions and enormous heterogeneity. The lowest layers of the
protocol stack (involving the physical infrastructure such as routers
and fiber-optic cables) have hard technological and economic
constraints, but each higher layer defines its own, often unique
connectivity, and the corresponding network topologies become, by

Fig. 4. The diversity of graphs having the same degree sequence D. Despite
having the identical budget, technology constraint, degree sequence, and
traffic-demand model, when computing and plotting for the four network
models in Fig. 1 their S(g) (x axis) and network performance P(g) (y axis)
metrics, the four models occupy completely different areas in the S(g) versus
P(g) plane.
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design, increasingly virtual and unconstrained. For example, in
contrast to routers and physical links, the allowable connectivity of
documents and virtual links in the World Wide Web (WWW) is
designed to be essentially completely unconstrained.

An important feature of the Internet’s highly organized but
largely hidden complexity is to make the full system robust to the
perturbations for which it was designed (26) but also potentially
quite vulnerable to other perturbations (27). All components must
obey the protocols, but because of extensive feedback regulation,
the overall system can tolerate otherwise enormous variability
within these constraints and still deliver robust functionality to
applications, which are also the least constrained components.
Because the complete absence of a component is allowed, the
system, by design, is robust to components that ‘‘fail off’’ by removal
from the network, whether caused by focused attacks or other
failures.

Note that it is protocols and feedback regulation and not simple
redundancy per se that enables this extraordinary robustness. An-
other striking aspect of this robust design is a scalability, evolvabil-
ity, and adaptability to exactly the kind of radical network change
(i.e., in both hardware at the lower layers and applications at the
highest layer) that the Internet has undergone in transforming from
an academic research network to a critical component of the
information infrastructure. Unfortunately, the Internet’s strong
robustness and adaptability coexists with an equally extreme fra-
gility to components ‘‘failing on,’’ particularly by malicious exploi-
tation or hijacking of the very mechanisms that confer its robustness
properties at higher levels in the protocol stack. Worms, viruses,
spam, and denial-of-service attacks remain familiar examples (28).
This RYF tradeoff is a critical aspect of the Internet, and much
research is devoted to enhancing these protocols in the face of new
challenges. Thus, understanding Internet robustness requires a
perspective that incorporates protocols, layering, and feedback
regulation, and this view suggests that the most essential RYF
features of the Internet actually come from aspects that are only
indirectly related to graph connectivity.

The presentation here has emphasized the HOT framework as an
alternate approach to SF models when considering the RYF nature
of the Internet, and many other choices of functions and constraints

are possible. Other researchers might emphasize alternative fea-
tures that highlight particular tensions (e.g., design tradeoffs at
different levels of the IP stack) and would be justified in doing so.
The main point is the importance of incorporating issues such as
performance, constraints, and tradeoffs (all of the things that make
engineering different from physics) when considering the ‘‘essen-
tial’’ features of a highly evolved system. Here we denote highly
evolved systems as those resulting from an iterative design that
incorporates tradeoffs between performance and the use of avail-
able resources. Thus, the RYF features of the Internet are the result
of its highly evolved nature, and a key objective here has been to
incorporate some of the most essential features in a simple model
that can be used to highlight the potential dangers of ignoring such
aspects entirely.

Conclusion
It is certainly appealing that SF network models can avoid all
Internet-specific structures, such as protocol stacks, technolog-
ical or economic constraints, and user heterogeneity, yet make
interesting and testable predictions. Unfortunately, this fact
yields results that collapse when tested with real data or when
examined by domain experts. Here, we have shown that there
exist technological, economic, and graph theoretic reasons why
the most important SF claim (i.e., that the Internet has ‘‘hubs’’
that form an Achilles’ heel through which most traffic f lows and
the loss of which would fragment the Internet and constitute its
attack vulnerability) cannot be (and is not) true for the current
router-level Internet. More generally, Table 1 shows that SFnet
and HOTnet are opposite in essentially every meaningful sense,
and the real Internet network is much more like HOTnet.

This raises the more basic question of the applicability to
highly evolved systems of unstructured, ensemble-based ap-
proaches, of which SF networks are just one example, and a
largely parallel story in biology further suggests that the answer
may be negative. Here, interesting and testable SF claims about
metabolic networks (29, 30) contrast sharply with both real data
and concrete HOT models (9). Again, functional descriptions
and component constraints, such as conservation of energy and
small moieties, the biochemical nature of underlying reactions,
and the importance of robustness and evolvability prove essential
(31). However, while the router-level story here may be reflec-
tive of a broader debate about methodologies appropriate for
complex networks, it is expected to take an even greater effort
in domains like biology to reach the same level of clarity.
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Table 1. SFnet vs. HOTnet and the real Internet

Feature SFnet HOTnet Real Internet

High-degree vertices Core Periphery Periphery
Degree distributions Power law Power law Highly variable
Generated by Random Design Design
Core vertices High degree Low degree Low degree
Throughput Low High High
Attack tolerance Fragile Robust Robust
Fragility High-degree�

hubs
Low-degree�core Hijack network
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